如何一一解決智能前端的那些不足?
點擊次數(shù):1378 更新時間:2019-12-28
如何一一解決智能前端的那些不足?
隨著安防智能化時代的開啟,行業(yè)用戶需要在前端設(shè)備中加入視頻智能分析的功能以減輕后端的工作壓力,但是嵌入到CPU中的智能算法將給ARM帶來超負荷的工作量,終的效果也是極差的。另外還有多種因素的存在,導致目前智能前端依然還只是輔助手段。
智能前端計算能力依然不足,成本太高
在人工智能領(lǐng)域,視頻監(jiān)控的海量數(shù)據(jù),為后端的分析帶來了不小的壓力。雖然智能前端已經(jīng)出現(xiàn)了許多的芯片,無論是英特爾movidius、英偉達的Jetson系列芯片,通用性較好,能夠運行各類神經(jīng)網(wǎng)絡(luò)算法,但價格相對較高,主要針對市場。目前從大數(shù)據(jù)的角度去分析,海量數(shù)據(jù)的分析處理僅僅依靠前端攝像機的智能分析顯然是不現(xiàn)實的。
智能前端解決的問題是對海量數(shù)據(jù)進行初步的智能化篩選工作,把有價值的視頻信息提取出來后送到后端進行綜合分析處理和判斷,兩者分工明確,不能貼以競爭對手的標簽。因為對于一個完備的安防系統(tǒng)而言,不存在智能前端會把后端設(shè)備替代的可能性,智能前端是緩解目前這種大多數(shù)以720P/1080P高清視頻傳輸壓力下的解決方法。
智能前端受到體積限制,解決芯片設(shè)計諸多問題
由于受到前端攝像機本身體積的限制,在攝像機的芯片加入智能算法,功耗肯定會比原來的大,散熱量也會加大。
解決智能前端需要對CPU硬件進行科學針對性的設(shè)計,不斷改善其功耗和散熱的功能,相比于前些年,現(xiàn)在的CPU已經(jīng)越做越好。其次是對嵌入的智能算法做優(yōu)化的處理,盡量避免程序過于復雜,減少運算量,讓一些復雜的東西變得簡單,比如可以先將特別耗費CPU資源的算法先硬化到芯片中去,減少智能算法對處理器資源的占用,這樣便可以大大提高運算的效率。